黄仁勋:我从不在乎市场份额,英伟达唯一目标是创造新市场
创始人
2024-10-23 13:01:07
0

一水 发自 凹非寺

量子位 | 公众号 QbitAI

“这是我听过的黄仁勋最好的采访!”

英伟达CEO黄仁勋的一场炉边谈话再次引起热议:

英伟达从来没有一天谈论过 市场份额

我们所讨论的只是:如何创造下一个东西?如何将过去需要一年才能完成的飞轮缩短到一个月?

面对Azure和AWS等正在自主构建ASIC芯片的云计算大客户,老黄打了个比喻:

公司受到鱼塘大小的限制,唯一的目标是用想象力扩大鱼塘。 (指创造新市场)

当然了,除了提及英伟达,老黄还讨论了AGI的智能扩展、机器学习的加速、推理与训练的重要性……

虽然时长感人 (近1个半小时),但一大波网友已经看完并交起了作业 (开始卷了是吧!)

网友:学起来!学起来!

黄仁勋:未来推理的增长将远大于训练

鉴于视频较长,量子位先直接给大家划重点了,老黄的主要观点包括 (省流版)

  • “口袋里的AI助理”将很快以某种形式出现,尽管最初可能会不完美;
  • 英伟达的竞争优势在于建立了从GPU、CPU、网络到软件和库的全栈平台;
  • 扩展人工智能的重点已从训练前转移到训练后和推理;
  • 推理(inference)时计算将作为一个全新的智能扩展向量;
  • 未来推理的增长将远大于训练的增长;
  • 闭源和开源将共存,开源模型可能用于创建特定领域的应用程序;
  • ……

(以下为重点部分整理)

Q:关于个人AI助理的发展前景,您认为我们何时能在口袋里装上一个无所不知的AI助理?

A:很快就会以某种形式出现。这个助理一开始可能不够完美,但会随着时间推移不断改进,这是技术发展的必然规律。

Q:目前AI领域的发展变化速度是否是您见过最快的?

A:是的,这是因为我们重新发明了计算。在过去 10年里,我们将计算的边际成本降低了 10万倍,而按照摩尔定律可能只能降低 100倍

我们通过以下方式实现了这一点:

  • 引入加速计算,将原本在CPU上效率不高的工作转移到GPU上
  • 发明新的数值精度
  • 开发新架构(如张量核心)
  • 采用高速内存(HBM)
  • 通过MVLink和InfiniBand实现系统扩展

这种快速发展使我们从人工编程转向了 机器学习,整个技术栈都在快速创新和进步。

Q:模型规模扩展方面有哪些变化?

A:以前我们主要关注预训练模型的扩展 (重点在模型大小和数据规模),这使得所需计算能力每年增加4倍。

现在我们看到 后训练(post-training)和推理阶段也在扩展。人类的思维过程不可能是一次性完成的,而是需要快思维、慢思维、推理、反思、迭代和模拟等多个环节。

而且,以前人们认为预训练难,推理简单, 但现在都很难了。

Q:与3-4年前相比,您认为NVIDIA今天的优势是更大还是更小?

A:实际上更大了。过去人们认为芯片设计就是追求更多的FLOPS和性能指标,这种想法已经过时。

现在的关键在于整个机器学习系统的 数据流水线(flywheel),因为机器学习不仅仅是软件编程,而是涉及整个数据处理流程。从一开始的数据管理就需要AI参与。数据的收集、整理、训练前的准备等每个环节都很复杂,需要大量处理工作。

Q:与Intel等公司相比,Nvidia在芯片制造和设计方面有什么不同的策略?

A:Intel的优势在于制造和设计更快的x86串行处理芯片,而Nvidia采取不同策略:

  • 在并行处理中,不需要每个晶体管都很出色
  • 我们更倾向于使用更多但较慢的晶体管,而不是更少但更快的晶体管
  • 宁愿有10倍数量、速度慢20%的晶体管,也不要数量少10倍、速度快20%的晶体管

Q:关于定制ASIC(如Meta的推理加速器、亚马逊的Trainium、Google的TPU)以及供应短缺的情况,这些是否会改变与NVIDIA的合作动态?

A:这些都是在做不同的事情。NVIDIA致力于为这个新的机器学习、生成式AI和智能Agent世界构建计算平台。

在过去60年里,我们重新发明了整个计算技术栈,从编程方式到处理器架构,从软件应用到人工智能,每个层面都发生了变革。 我们的目标是创建一个随处可用的计算平台

Q:NVIDIA作为一家公司的核心目的是什么?

A:构建一个无处不在的架构平台。 我们不是在争夺市场份额,而是在创造市场。我们专注于创新和解决下一个问题,让技术进步的速度更快。

Q:NVIDIA对待竞争对手和合作伙伴的态度是什么?

A:我们对竞争很清醒,但这不会改变我们的使命。我们向AWS、Azure等合作伙伴 提前分享路线图,保持透明,即使他们在开发自己的芯片。对于开发者和AI初创公司,我们提供CUDA作为统一入口。

Q:对OpenAI的看法如何?如何看待它的崛起?

A:OpenAI是我们这个时代最重要的公司之一。虽然AGI的具体定义和时间点并不是最重要的,但AI能力的发展路线图将会非常壮观。从生物学家到气候研究者,从游戏设计师到制造工程师,AI已经在革新各个领域的工作方式。

我非常欣赏OpenAI推进这一领域的速度和决心,并为可以资助下一代模型感到高兴。

Q:您认为模型层是否正在走向商品化,以及这对模型公司的影响是什么?

A:模型层正在商品化,Llama的出现使得构建模型变得更加便宜。这将导致模型公司的整合,只有那些拥有经济引擎并能够持续投资的公司才能生存。

Q:您如何看待AI模型的未来,以及模型与人工智能之间的区别?

A:模型是人工智能必不可少的组成部分, 但人工智能是一种能力,需要应用于不同的领域。我们将看到模型层的发展,但更重要的是人工智能如何应用于各种不同的应用场景。

Q:您如何看待X公司,以及他们建立大型超级集群的成就?

A:他们在 19天内(通常需要3年)建造了一个拥有100,000个GPU的超级计算机集群。这展示了我们的平台的力量,以及我们能够将整个生态系统集成在一起的能力。

Q:是否认为分布式计算和推理扩展将会发展到更大规模?

A:是的,我对此非常热情和乐观。 推理时计算作为一个全新的智能扩展向量,与仅仅构建更大的模型截然不同。

Q:在人工智能中,是否很多事情只能在运行时完成?

A:是的,很多智能工作不能先验地完成, 很多事情需要在运行时完成

Q:您如何看待人工智能的安全性?

A:我们必须构建安全的人工智能,并为此需要与政府机构合作。我们已经在建立许多系统来确保人工智能的安全性,并需要确保人工智能对人类是有益的。

Q:你们公司超过40%的收入来自推理,推理的重要性是否因为推理链而大大增加?

A:没错,推理链让推理的能力提高了十亿倍,这是我们正在经历的工业革命。 未来推理的增长将远大于训练的增长

Q:你们如何看待开源和闭源人工智能模型的未来?

A:开源和闭源模型都将存在,它们对于不同的行业和应用都是必要的。开源模型有助于激活多个行业,而闭源模型则是经济模型创新的引擎。

对于上述这些,你怎么看?欢迎在评论区留言讨论。

参考链接:

[2]https://www.youtube.com/watch?v=bUrCR4jQQg8

评选征集中

「2024人工智能年度评选」

量子位2024人工智能年度评选已开启报名通道,评选从 企业人物产品三大维度设立了5类奖项。

欢迎扫码报名评选!评选结果将于12月公布,期待与数百万从业者共同见证荣誉时刻。

点这里 👇关注我,记得标星哦~

科技前沿进展日日相见 ~

相关内容

热门资讯

vivo钱包遭用户投诉贷款利率... 文:WEMONEY研究室 随着移动互联网时代到来,智能手机已经成为了生活的必需品。目前,很多手机如...
小米14T Pro海外定档9月... 【ITBEAR】9月23日消息,小米今日在X平台上宣布,旗下新款手机小米14T Pro定于9月26日...
邓宏魁、张涛、李亚栋、孙斌勇获... 出品 | 搜狐科技 作者 | 周锦童 8月16日上午10时,2024未来科学大奖新闻发布会在北京、香...
华为发布ICT人才实训解决方案... [中国,上海,2024年9月19日] 华为全联接大会2024期间,在以“助力ICT人才培养,共赢数智...
iPhone 16系列手机网速... 在智能手机的世界里,网速往往是衡量一部手机性能的重要指标之一。 尤其是随着5G时代的到来,用户对于高...
微波传输赋能空管保障联合创新实...   鲁网9月30日讯近日,济南联通与民航山东空管分局共同开展双路由光缆中断后的微波系统保护演练,系统...
湖南各地广泛开展“传承红色基因... 为庆祝中华人民共和国成立75周年,湖南各地积极组织开展“传承红色基因·向国旗敬礼”主题实践活动,引导...
我国成功发射首颗可重复使用返回... 记者从国家航天局获悉,9月27日18时30分,我国在酒泉卫星发射中心采用长征二号丁运载火箭,成功发射...
原创 首... 9月20日iPhone 16系列正式开售,当天预订的用户已经可以拿到新机。现在很多第一批购买的朋友都...
抖音老阳分享的Temu项目是真... 近年来,随着社交媒体的发展,抖音成为了许多人获取信息和进行消费的主要平台。其中,抖音博主老阳分享的T...