我国在量子纠错领域达到关键里程碑
创始人
2025-12-25 00:20:43
0

科技日报合肥12月23日电(记者吴长锋)记者23日从中国科学技术大学获悉,该校教授潘建伟、朱晓波、彭承志和副教授陈福升等,基于超导量子处理器“祖冲之3.2号”在码距为7的表面码上实现了低于纠错阈值的量子纠错,演示了逻辑错误率随码距增加而显著下降。这一成果标志着我国达到了“低于阈值,越纠越对”的关键里程碑,并开辟了一条较美国谷歌公司更为高效的“全微波控制”新路径,为未来大规模容错量子计算奠定关键技术基础。12月22日,该成果以封面论文和“编辑推荐”的形式发表于国际学术期刊《物理评论快报》,美国物理学会《物理》栏目进行专题报道。

实现容错通用量子计算机的必要条件是通过量子纠错抑制量子比特的错误率以满足大规模集成的要求。表面码是目前最成熟的量子纠错方案之一。然而,量子纠错需要引入大量额外的量子比特和量子门操作,导致更多的噪声源和错误通道。如果物理量子比特的原始错误率过高,增大纠错码距带来的额外错误反而会淹没纠错带来的收益,导致“越纠越错”。其中,“泄漏错误”尤为致命——随着系统规模的扩大,泄漏错误的累积效应将成为阻碍纠错性能提升的主要瓶颈。因此,如何使系统的整体操控精度突破一个严苛的“纠错阈值”,从而实现“越纠越对”的量子纠错,是衡量量子计算系统能否从实验室原型走向实用化的关键分水岭。

在前期研究基础上,中国科学技术大学团队基于107比特“祖冲之3.2号”量子处理器,提出并成功实践了一种全新的“全微波量子态泄漏抑制架构”。研究团队结合全微波量子态泄漏抑制架构,实现了码距为7的表面码逻辑比特。实验结果显示,逻辑错误率随码距增加显著下降,错误抑制因子达到1.4,证明了系统已工作在纠错阈值之下,成功达到了“越纠越对”的目标。

编辑:申久燕

相关内容

热门资讯

原创 苹... 有不少朋友疑惑苹果iPhone 16 Pro和16 Pro Max有什么区别?该选择哪一款更好?各自...
2024年OPPO手机全攻略:... 手机已不仅仅是通讯工具,它更是我们记录生活、享受娱乐、提升工作效率的重要伙伴。随着科技的飞速发展,O...
2025年值得入手的2款智能手... 在科技飞速发展的今天,智能手表已成为我们生活中不可或缺的伙伴。无论是健康监测、信息提醒,还是时尚搭配...
原创 2... 从去年华为用上了麒麟芯片开始,华为的市场份额就蹭蹭的往上涨,当时抢购的人特别多,一时间还买不到现货,...
第五轮学科评估对比:西安交大突... 在之前的文章中,我们已经提及西安交通大学第五轮学科评估的表现可圈可点,新晋的3个A+学科:机械工程、...
vivo手机5g开关在哪里打开 vivo手机5G开关的打开方式可能因手机型号、系统版本及运营商网络支持情况的不同而有所差异。但总体来...
解决FaceTime无法使用的... FaceTime是苹果公司推出的一款视频通话应用,广泛应用于iPhone、iPad和Mac等设备上。...
steam官网无法访问?这个办... 对于广大游戏爱好者而言,Steam平台无疑是获取最新游戏资讯、购买游戏、与全球玩家互动的重要阵地。然...
原创 直... #热点周际赛# 随着科技的进步,儿童智能穿戴设备逐渐成为了家庭中的新宠。华为作为智能穿戴领域的领军者...
原创 麒... 为了普及原生鸿蒙(鸿蒙5.0),抢占更多的中端手机市场份额,华为nova系列今年开始计划一年两更,n...